skip to main content


Search for: All records

Creators/Authors contains: "Heiman, Don"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr 2 Te 3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr 2 Te 3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr 2 Te 3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic layers/domains. The versatile interface tunability of Berry curvature in Cr 2 Te 3 thin films offers new opportunities for topological electronics. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Subramanyam, Guru ; Banerjee, Partha ; Lakhtakia, Akhlesh ; Sun, Nian X. (Ed.)
  4. Abstract

    Mechanical stacking of two dissimilar materials often has surprising consequences for heterostructure behavior. In particular, a 2D electron gas (2DEG) is formed in the heterostructure of the topological crystalline insulator Pb0.24Sn0.76Te and graphene due to contact of a polar with a nonpolar surface and the resulting changes in electronic structure needed to avoid polar catastrophe. The spintronic properties of this heterostructure with non‐local spin valve devices are studied. This study observes spin‐momentum locking at lower temperatures that transitions to regular spin channel transport only at ≈40 K. Hanle spin precession measurements show a spin relaxation time as high as 2.18 ns. Density functional theory calculations confirm that the spin‐momentum locking is due to a giant Rashba effect in the material and that the phase transition is a Lifshitz transition. The theoretically predicted Lifshitz transition is further evident in the phase transition‐like behavior in the Landé g‐factor and spin relaxation time.

     
    more » « less
  5. null (Ed.)